Good Morning Welcome to the NextGen "All Hands"

NextGen Update JPDO All Hands Meeting

July 27, 2007

Charles A. Leader Director, Joint Planning and Development Office

2025 NextGen Principles and Concepts

Operating Principles

- User-focused
- System-wide transformation
- Prognostic approach to safety
- Globally harmonized
- Environmentally compatible

Key Capabilities

- Net-Enabled Information Access
- Performance-Based Services
- Weather-Assimilated Decision Making
- Layered, Adaptive Security
- Position, Navigation, and Timing Services
- Trajectory-Based Aircraft Operations
- "Equivalent Visual" Operations
- "Super Density" Operations

Top-Level JPDO Organization Air Transportation System System Office Organization

Aircraft (FAA) Airports (FAA) ANS (FAA) Env-mt (FAA) **Net-Centric (DoD)** Global (FAA) Safety (FAA) Security (TSA) Weather (DoC/NOAA)

Governance

- **Senior Policy** Committee
- **Board of Directors**

Advisors

- **REDAC Executive** Committee
- Institute Management Council

Inter-Agency Coordination

Joint Architecture & Engineering Board

Operational Concepts Working Group Overview

Working Group Structure

- Industry/government co-leads
- Committed at least 25%
- 6-8 members
- Committed at least 20%
- Reviews study team results
 - Task focused
 - Product delivery schedules
 - Disband upon completion

Working Group Members

 Provide volunteers for study team activities

NextGen Plan

ATM "View" of Evolution Next Generation Air Transportation System Joint Planning and Development Office

Research

Building NextGen

FY07 - 11

4DT Management
Performance-Based Ops &
Services
Equivalent Visual Ops
(CDTI)
Roles of Pilots & Controllers

FY12 - 18

Super Density Operations Time-Based Surface Ops Right Sizing of Facilities

FY19 - 25

Research for Evolving NextGen State

Core Technologies, Capabilities & Sys Eng

Epoch 1

FY07-11

- Complete R&D leading to mid-term
- Continue R&D that address long-term NextGen challenges
- Develop & implement known & new procedures, infrastructure, technologies
- Develop NextGen systems integration plan for mid-term transition to NextGen
- Complete infrastructure and systems engineering for mid-term

Mid-Term Transition to NextGen

Epoch 2 FY12-18

- Aircraft equipped for the mid-term & upgradeable to NextGen target
- Deliver NextGen services & capabilities across domains
- Complete "hard" infrastructure airports, runways, terminals, security
- Management & operating models support transition to NextGen and long-term sustainability

NextGen Solutions Fully Integrated & Operating

Epoch 3 FY19-25

- •NextGen solutions fully-integrated & operating across air transportation system
- •Services managed & operating in ways that achieve transformational outcomes across air transportation system

Implementation Approaches

- FAA Operational Evolution Partnership (OEP)
- DoD NextGen Program Office
 - Inter-agency Weather Study Team
 - Network-Enabled Operations
- DoC Inter-agency Weather Study Team
- DHS TBD
- NASA Aeronautics Research Plan

NextGen Implementation Status

Funded Commitments

FY09 FY07 FY08

ADS-B - Implement 1st segment of advanced surveillance & broadcast services to deliver en-route, terminal, & surface surveillance data from key sites via broadcast comm. link

> **SWIM** - Implement 1st set of data exchange services using net-centric technology and architecture to support increased shared situational awareness

NNEW – Demonstrate inter-agency Wx Dissemination Mgmt capabilities to Integrate effective Wx info into Operational decision-making

DataComm – Develop architecture to transform from a voice-only comm. to an air-ground data comm. capability

Demos & Infrastructure -

Perform formal demos that advance R&D, operational concepts and key infrastructure

Mid-Term Capabilities

2012 - 2018

- Initiate Trajectory-based **Operations**
- Increase Arrivals/Departures at High Density Airports
- Increase Flexibility in the Terminal Environment
- Improve Collaborative ATM
- Reduce Weather Impact
- Increase Safety, Security, and Environmental Performance
- Transform Facilities

Senior Policy Committee

Agreed to support:

- Development of the NextGen National Information Sharing Framework
 - DoD lead
 - Proposed Governance and Oversight Structure will be presented at the next SPC meeting
- Development of Safety Management System Standard
 - Aviation Safety Information Analysis and Sharing
 - Multi-agency governance and accountability
- Joint Weather Study Team By January 1, 2008
 - Common functional 4D Weather Cube requirements
 - Evolve baseline requirements
 - Refine cost-benefit analysis

The Cost of NextGen

- JPDO has reviewed several initial outside estimates:
 - FAA's Research, Engineering and Development Advisory Committee (REDAC)
 - MITRE Avionics Estimate
 - FAA's Air Traffic Organization (ATO)
- The first five years \$4.6 billion:
 - \$4.3 billion in ATO capital appropriation
 - \$300 million in research, engineering and development

The Cost Of NextGen (cont'd)

- Longer-Term Cost Estimates:
 - Next 10 years \$8-10 billion
 - End-state or through 2025 \$15-22 billion
- Avionics costs = \$14-20 billion

Benefits of End-State NextGen

Phase of Flight	Flight Situation	Flight Time Reduction	Total Dollar Savings per Year	Portion of Savings Due To Fuel
Surface-Taxi out and Taxi-in	Small Airports	30 seconds	\$328 million	\$79 million
	Large Airports	2 minutes	\$1.3 billion	\$315 million
Terminal area, including departure, landing	Small Airports, Good Wx	10 minutes	\$6.5 billion	\$1.6 billion
	Large Airports, Bad Wx	30 minutes	\$19.7 billion	\$4.7 billion
Enroute (cruise phase)	Good Weather	10 minutes	\$6.5 billion	\$1.6 billion
	Severe Weather	20 minutes	\$13.1 billion	\$3.1 billion

Based upon FAA estimates of \$2,736/hour of airline direct operating costs, includes variable (fuel is assumed to cost \$722/hour) and fixed costs (such as depreciation), and \$1,090/hour of general aviation direct operating costs (GA fuel is assumed to cost \$114/hour).

Assumes 36,000 airline flights/day, 16,000 general aviation IFR flights/day.

Assumes all flights accrue the benefits. Benefits across flight phases are not additive due to overlapping assumptions and correlation.

Source of cost data: GRA Inc., "Economic Values for FAA Investment and Regulatory Decisions, a Guide," FAA APO, December 2004.

Recent Activities

Congressional

- U.S. Senate Subcommittee on Aviation Operations, Safety, and Security – Professional Staff Briefing, April 5
- U.S. House Committee on Transportation and Infrastructure,
 Subcommittee on Aviation Hearing on the Future of Air Traffic
 Control Modernization, May 9
- NextGen Day on the Hill (House), June 13
- NextGen Day on the Hill (Senate), July 11

Recent Activities (cont'd)

Governance

- JPDO Board Meetings (2), May 23 and June 8
- SPC Meeting, June 25
- FAA Management Advisory Council, July 20

Coordination

- NextGen Steering Group Meeting with CAAC/ATMB, April 14–19
- NASA Day, May 16
- CIO Information Sharing Summit, May 24
- Integration Council Meetings (2), May 18 and June 20
- Electronic Systems Center Staff Visit, June 26
- Weather Day: Industry and Government, June 27
- Information Sharing Environment, July 17

Recent Activities (cont'd)

Presentations

- Aviation 2007: Ready to Takeoff U.S. Chamber of Commerce Event, April 4
- NASA National Advisory Council (NAC) meeting, Kennedy Space Center,
 April 17 18
- NEO Demonstration to Secretary Peters, May 1
- REDAC, May 2
- Cross Border Aviation Summit, Juneau, Alaska, May 29 31
- Flight Explorer Users' Conference, June 5 6
- MITRE Aviation Advisory Committee, June 8
- Inter-agency Surveillance Summit, Colorado Springs, June 20
- NGATS Institute Annual Public Meeting, June 21
- Aeronautics and Space Engineering Board, June 22
- FAA/EUROCONTROL ACTION PLAN 2 Technical Interchange Meeting, June 22 – 28
- DOD Policy Board on Federal Aviation, July 9

Potential 2008 JPDO Workplan

- Synchronize JPDO products with each other and the Federal budget cycle
- Achieve multi-agency alignment with NextGen plans
- Target high leverage activities and investments
- Define metrics to assess NextGen progress
- Establish a NextGen simulation-based decision support environment

Thank you.

Comments / Questions

BACKUP

Key Capabilities: Network Enabled Information Access

- Network Enabled Operations (NEO)
- Network Enabled Infrastructure (NEI)
- ➤ Network Enabled Weather (NNEW)

Key Capabilities: Performance-Based Operations and Services

- Collaborative ATM
- ➤ Modernized Surface Ops.
- ➤ Weather Impacted Ops.
- Trajectory-based Ops.
- ➤ Trajectory-based Separation Management
- ➤ Dynamic Resource & Aerospace Management

Key Capabilities: Weather Assimilated into Decision-Making

- Net-centric weather information is made available and understandable to all approved users
- A reliable virtual, common weather picture is foundational for optimal air transportation decision-making
- Presentation of weather data is tailored to user operational needs
- Widespread use of integrated probabilistic weather-related decision support systems
- Automatic updates to users based on operational need
- An adaptive observing system integrating ground, airborne and spaced-based sensors

Key Capabilities: Layered Adaptive Security

- ➤ Adaptive Security for People, Cargo, Airports and Aircraft
- ➤ Risk Assessment-Driven Evaluation and Response
- Positive Identification for People and Cargo
- Preventive Threat Detection and Mitigation

Key Capabilities: Position, Navigation and Timing Services (PNT)

- ➤ Air routes are independent of the location of ground-based navigation aids
- ➤ RNAV is used everywhere; RNP is used where required
- System performance meets operational needs to service the demand
- ➤ Increased availability of guided approaches at smaller airports*

Key Capabilities: Aircraft Trajectory-Based Operations

Services and Operations based on precise trajectory execution

- ➤ Self-Separation Services
- > Flow Corridors
- Super Density Arrival/Departure Airspace

Key Capabilities: Equivalent Visual Operations

- Improved information availability which allows aircraft operations without regard to visibility
- Access to PNT enables increased accessibility for airport surface and arrival/departure operations
- ➤ Enables more predictable and efficient operations regardless of meteorological conditions

Key Capabilities: Super Density Operations

- ➤ Use of RNP operations and procedures
- Mitigation of wake vortex constraints
- ➤ Improved runway incursion prevention algorithms
- ➤ Automatic distribution of runway braking action reports
- ➤ Distribution of taxi instructions before landing
- Use of aircraft sensors

